Reg. No.				

G. VENKATASWAMY NAIDU COLLEGE (AUTONOMOUS), KOVILPATTI - 628 502.

UG DEGREE END SEMESTER EXAMINATIONS - NOVEMBER 2025.

(For those admitted in June 2023 and later)

PROGRAMME AND BRANCH: B.Sc., STATISTICS

SEM	CATEGORY	COMPONENT	COURSE CODE	COURSE TITLE
V	PART - III	CORE ELECTIVE - 1	U23ST5E1A	OPERATIONS RESEARCH

Date & Session:08.11.2025/FN Time: 3 hours Maximum: 75 Marks

Course Outcome	Bloom's K-level	Q. No.	<u>SECTION – A (</u> 10 X 1 = 10 Marks) Answer <u>ALL</u> Questions.
CO1	K1	1.	In a Linear Programming Problem, the objective function is: a) Always linear b) Always non-linear c) May be linear or non-linear d) Constant
CO1	K2	2.	In the Simplex Method, a basic feasible solution must satisfy: a) Only non-negativity constraints b) Only equality constraints c) Both equality and non-negativity constraints d) Only the objective function
CO2	K1	3.	The primary objective of a transportation problem is: a) To maximize the profit of shipments b) To minimize the total transportation cost c) To balance supply and demand exactly d) To determine the shortest route
CO2	K2	4.	 In Vogel's Approximation Method (VAM), the penalty is calculated as: a) Difference between the highest and second highest cost in a row or column b) Difference between the lowest and second lowest cost in a row or column c) Sum of the smallest costs in each row d) Maximum value in the row or column
CO3	K1	5.	In Game Theory, a saddle point in the payoff matrix represents: a) The point of maximum gain for the column player b) The point of minimum loss for the row player and maximum gain for the column player c) The point of maximum loss for both players d) The highest value in the matrix
CO3	K2	6.	The principle of dominance in Game Theory is used to: a) Replace a strategy with a better one b) Find the saddle point directly c) Convert a 2x2 game to a 3x3 game d) Eliminate the need for a payoff matrix

CO4	K1	7.	The objective of a replacement policy is to: a) Minimize the number of replacements b) Maximize the working life of an asset c) Minimize the average cost per period d) Reduce the depreciation of the asset									
CO4	K2	8.	When the value of money changes over time, the replacement decision is based on: a) Average cost method b) Present worth method c) Scrap value method d) Equal cost method									
CO5	K1	9.	In CPM, the focus is primarily on: a) Probabilistic time estimates b) Minimizing project cost c) Deterministic time estimates d) Resource leveling									
CO5	K2	10.	In a project network, slack for an activity is: a) The delay allowed without affecting project completion time b) The total project duration c) The earliest start time of an activity d) The difference between earliest and latest event times									
Course Outcome	Bloom's K-level	Q. No.	$\frac{\text{SECTION} - B \text{ (5 X 5 = 25 Marks)}}{\text{Answer } \frac{\text{ALL}}{\text{Questions choosing either (a) or (b)}}$									
CO1	К3	11a.	Solve the following LPP graphically: Maximize $Z=3x+2y$ Subject to: $x+y\le 4$, $x\le 2$, $y\le 3$, x , $y\ge 0$ (OR)									
CO1	К3	11b.	 A furniture manufacturer produces tables (x₁) and chairs (x₂). The profit contribution is ₹4 per table and ₹3 per chair. Due to production capacity limits: Each table requires 1 hour of cutting and 2 hours of polishing. Each chair requires 3 hours of cutting and 2 hours of polishing. The cutting department can work at most 8 hours per day. The polishing department must work at least 12 hours per day to meet contractual obligations. Formulate the Linear Programming Problem in standard form so that the profit is maximized. 									
CO2	К3	12a.	S1, S2, S3. 7	The supply follow. Find the	rom eacl	ı warehoı	ise and d	nd three retail stores emand at each store cion using the North-				
					S ₁	S_2	S ₃	Supply				
			W.		2	7	4	5				
			W W	I ₂	<u>3</u> 5	3	7					
			Dem		7	9	4	1				
						(OR)	l					
CO2	КЗ	12b.				Problem u	ising the	Hungarian Method				
			to find the n		st:	В	С	D				
			P ₁	A 82		83	69	92				
			$\frac{1}{P_2}$	77		37	49	92				
			P ₃	11		69	5	86				

			P ₄	8			9		98		23		
CO3	K4	13a.	Find the valu	Solve the following game using the Maximin and Minimax criterion. Find the value of the game and the optimal strategies. Payoff Matrix (for Player A):									
							B_1		B_2				
				-	Aı		4		6				
				-	A_2		2		8				
				<u>-</u>			(OR)						
CO3	K4	13b.	Apply the pri	_	omin	ance	to re	duce	e the m	atrix aı	nd find	the	
				B ₁ B ₂ B ₃									
					Aı	2		1	6				
					A_2	3	2	2	5				
					A_3	4	3	3	4				
CO4	K4	14a.		The maintenance cost of a machine over its years of service is given below. The value of money is constant. Find the optimal replacement time.									
				Year				1	2	3	4	5	
			Maintenanc		0 0		10	000	1200	1500	1900	2500	
			Purchase Pr Value = ₹10		u, Sc	rap							
			value – (10	00			(OR)						
CO4	K4	14b.	A company o maintenance ₹20,000. The replacement	costs incr value of n	ease	each	year	as s	shown b	elow. S	Scrap v		
				ear		1	2		3	4		5	
			Maintenar	nce Cost (₹)) 20,	000	25,0	000	32,000) 42,0	00 55	,000	
CO5	K5	15a.	A small proje	ect has the									
				Activity	Pre	dece	ssor	Du	ration (days)			
				A	+				4				
				B C		A A			<u>5</u> 3				
				D		B, C			6				
			Draw the net		ram a	nd fi	nd th	e pr		ompleti	on time	.	
CO5	K5	15b.	The following	data is gi	ven fo		(OR)	†•					
				Activity		dece			ration (days)			
				A		_		<u> </u>	2	- J /			
				В		A			5				
				С		A			4				
				D		В			6				
				E		C			3				
			D: 141	F	1 .	D, E			2				
			Find the critical path and total float for activity C.										

Course Outcome	Bloom's K-level	Q. No.	SECTION - C (5 X 8 = 40 Marks) Answer ALL Questions choosing either (a) or (b)									
CO1	К3	16a.	Solve using the Simplex Method: Maximize $Z=2x_1+3x_2$ Subject to: $x_1+x_2\le 4$ $x_1+3x_2\le 6$, $x_1,x_2\ge 0$ (OR)									
CO1	К3	16b.	Solve using the Big-M Method: Minimize $Z=4x_1+6x_2$ Subject to: $x_1+x_2\ge 2$, $3x_1+2x_2\ge 6$, $x_1,x_2\ge 0$									
CO2	K4	17a.		Find the initial basic feasible solution using Vogel's Approximation Method (VAM) and compute the transportation cost.								
			Wiethou (VIII)			D ₁	D_2	D ₃	Supply			
				S ₁		19	30	50	7			
				S ₂	,	70	30	40	9			
				S ₃		40	8	70	18			
				Demand 5 8 21								
CO2	K4	17b.			n give	deter: en b	elow (initial	BFS from	tion for the Least Cost		
				S ₁		D ₁	D ₂	D ₃	Supply 60			
				$\frac{S_1}{S_2}$		9	12	13	50			
				S ₃		14	9	16	40			
				Demand	1 :	30	70	50				
CO3	K4	18a.	Solve the foll	owing 2×2	game	with	out a	saddle	e point:			
							Bı	B_2				
					Aı		1	3				
					A_2		4	2				
			0.1 41 6.11			•	OR)	1 . 1	」	,		
CO3	K4	18b.	Solve the following game using the Graphical Method ($2 \times n$ game): $B_1 B_2 B_3$									
					A ₁	4	2	6				
					A_2	5	3	2				
66:	***	10		TC 00 00						1 1 2		
CO4	K5	19a.	each year are	A truck costs ₹6,00,000. The maintenance costs and resale values for each year are given below. The value of money remains constant. Find the optimal replacement time.								

				Year Maintenance Cost (₹)					Resa	le Va)				
				1	50,000				4	,00,0					
				2	55,000				3	,00,0					
				3	70,000				2	,00,0	000				
				4			90,000		1	,20,0	000				
				5		1	,20,000			80,00	00				
CO4	K5	19b.	are given l	1 40,000 3,50 2 55,000 2,40							ges at a discount rate of 10				
				3	75,0										
					1,0			•	1,00,			<u> </u>			
CO5	K5	20a.	A project h weeks):	nas t	he follow	vin	g activities w	rith t	hree	time	estim	ates (in			
					Activity	у	Predecessor		а	m	b				
					A		_		2	4	6				
					В		A		3	5	9				
					С		A		2	3	4				
					D		B, C		4	6	8				
				culate	T, ulate the expected time for each activity. the critical path and expected project completion time. (OR)										
CO5	K5	20b.	A construc	cti <u>on</u>	project	inv	olves the foll	lowir	ng ac	tiviti	es:				
				P	Activity	Р	redecessor	Dι	ıratio	on (da	ays)				
					A		_			5					
					В		_			7					
					С		A		6						
					D		A		8						
					E B, C					5					
					F		D, E			4					
				e cri			rk diagram. project com	pleti	on ti	me,	and to	otal float for			